3.3.13 \(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2} \, dx\) [213]

3.3.13.1 Optimal result
3.3.13.2 Mathematica [C] (warning: unable to verify)
3.3.13.3 Rubi [A] (verified)
3.3.13.4 Maple [A] (verified)
3.3.13.5 Fricas [A] (verification not implemented)
3.3.13.6 Sympy [F(-1)]
3.3.13.7 Maxima [B] (verification not implemented)
3.3.13.8 Giac [F]
3.3.13.9 Mupad [F(-1)]

3.3.13.1 Optimal result

Integrand size = 25, antiderivative size = 200 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2} \, dx=\frac {163 a^{5/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{64 d}+\frac {163 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{64 d \sqrt {a+a \cos (c+d x)}}+\frac {163 a^3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {17 a^3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{4 d} \]

output
163/64*a^(5/2)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+163/96* 
a^3*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+17/24*a^3*cos(d*x 
+c)^(5/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+163/64*a^3*sin(d*x+c)*cos(d* 
x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)+1/4*a^2*cos(d*x+c)^(5/2)*sin(d*x+c)*(a 
+a*cos(d*x+c))^(1/2)/d
 
3.3.13.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.99 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.91 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2} \, dx=\frac {(a (1+\cos (c+d x)))^{5/2} \sec ^4\left (\frac {1}{2} (c+d x)\right ) \left (7 (89+28 \cos (c+d x)+3 \cos (2 (c+d x))) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {1}{2},\frac {7}{2},2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right )-24 (3+\cos (c+d x)) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {3}{2},\frac {9}{2},2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^2(c+d x)-6 \csc ^2\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (-\frac {1}{2},\frac {3}{2},2;1,\frac {9}{2};2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^4(c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{420 d} \]

input
Integrate[Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(5/2),x]
 
output
((a*(1 + Cos[c + d*x]))^(5/2)*Sec[(c + d*x)/2]^4*(7*(89 + 28*Cos[c + d*x] 
+ 3*Cos[2*(c + d*x)])*Hypergeometric2F1[-3/2, 1/2, 7/2, 2*Sin[(c + d*x)/2] 
^2] - 24*(3 + Cos[c + d*x])*Hypergeometric2F1[-1/2, 3/2, 9/2, 2*Sin[(c + d 
*x)/2]^2]*Sin[c + d*x]^2 - 6*Csc[(c + d*x)/2]^2*HypergeometricPFQ[{-1/2, 3 
/2, 2}, {1, 9/2}, 2*Sin[(c + d*x)/2]^2]*Sin[c + d*x]^4)*Tan[(c + d*x)/2])/ 
(420*d)
 
3.3.13.3 Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.04, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 3242, 27, 3042, 3460, 3042, 3249, 3042, 3249, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}dx\)

\(\Big \downarrow \) 3242

\(\displaystyle \frac {1}{4} \int \frac {1}{2} \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a} \left (17 \cos (c+d x) a^2+13 a^2\right )dx+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a} \left (17 \cos (c+d x) a^2+13 a^2\right )dx+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (17 \sin \left (c+d x+\frac {\pi }{2}\right ) a^2+13 a^2\right )dx+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {1}{8} \left (\frac {163}{6} a^2 \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}dx+\frac {17 a^3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} \left (\frac {163}{6} a^2 \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {17 a^3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3249

\(\displaystyle \frac {1}{8} \left (\frac {163}{6} a^2 \left (\frac {3}{4} \int \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}dx+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {17 a^3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} \left (\frac {163}{6} a^2 \left (\frac {3}{4} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {17 a^3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3249

\(\displaystyle \frac {1}{8} \left (\frac {163}{6} a^2 \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {17 a^3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} \left (\frac {163}{6} a^2 \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {17 a^3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {1}{8} \left (\frac {163}{6} a^2 \left (\frac {3}{4} \left (\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {17 a^3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}+\frac {1}{8} \left (\frac {17 a^3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}+\frac {163}{6} a^2 \left (\frac {3}{4} \left (\frac {\sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\right )\)

input
Int[Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(5/2),x]
 
output
(a^2*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(4*d) + ((1 
7*a^3*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (1 
63*a^2*((a*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]) 
 + (3*((Sqrt[a]*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d 
 + (a*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]])))/4))/ 
6)/8
 

3.3.13.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3242
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(d*(m 
+ n))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c* 
(m - 2) + b^2*d*(n + 1) + a^2*d*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 
 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[ 
n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[ 
c, 0]))
 

rule 3249
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x]) 
^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[2*n*((b*c + a*d)/(b*( 
2*n + 1)))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], 
 x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 
0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 
3.3.13.4 Maple [A] (verified)

Time = 12.29 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.09

method result size
default \(\frac {\left (48 \sin \left (d x +c \right ) \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+184 \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+326 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+489 \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+489 \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {\cos }\left (d x +c \right )\right ) a^{2}}{192 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(218\)

input
int(cos(d*x+c)^(3/2)*(a+cos(d*x+c)*a)^(5/2),x,method=_RETURNVERBOSE)
 
output
1/192/d*(48*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+184* 
sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+326*sin(d*x+c)*c 
os(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+489*sin(d*x+c)*(cos(d*x+c)/(1+ 
cos(d*x+c)))^(1/2)+489*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2) 
))*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)/(1+cos(d*x+c))/(cos(d*x+c)/(1 
+cos(d*x+c)))^(1/2)*a^2
 
3.3.13.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.68 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2} \, dx=\frac {{\left (48 \, a^{2} \cos \left (d x + c\right )^{3} + 184 \, a^{2} \cos \left (d x + c\right )^{2} + 326 \, a^{2} \cos \left (d x + c\right ) + 489 \, a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 489 \, {\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{192 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

input
integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")
 
output
1/192*((48*a^2*cos(d*x + c)^3 + 184*a^2*cos(d*x + c)^2 + 326*a^2*cos(d*x + 
 c) + 489*a^2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 
489*(a^2*cos(d*x + c) + a^2)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt( 
cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c) + d)
 
3.3.13.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**(3/2)*(a+a*cos(d*x+c))**(5/2),x)
 
output
Timed out
 
3.3.13.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7450 vs. \(2 (168) = 336\).

Time = 0.76 (sec) , antiderivative size = 7450, normalized size of antiderivative = 37.25 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2} \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")
 
output
1/768*(10*(cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/ 
2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4 
*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(3/4)*((3*a^2*cos(4*d*x + 4*c)^2*sin( 
4*d*x + 4*c) + 3*a^2*sin(4*d*x + 4*c)^3 + 12*(a^2*sin(4*d*x + 4*c)^3 + (a^ 
2*cos(4*d*x + 4*c)^2 - 2*a^2*cos(4*d*x + 4*c) + a^2)*sin(4*d*x + 4*c))*cos 
(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 12*(a^2*sin(4*d*x + 
4*c)^3 + (a^2*cos(4*d*x + 4*c)^2 + 2*a^2*cos(4*d*x + 4*c) + a^2)*sin(4*d*x 
 + 4*c))*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 3*(2*a^2 
*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))*sin(4*d*x + 4*c) + a 
^2*sin(4*d*x + 4*c) - 2*(a^2*cos(4*d*x + 4*c) + a^2)*sin(1/2*arctan2(sin(4 
*d*x + 4*c), cos(4*d*x + 4*c))))*cos(3/4*arctan2(sin(4*d*x + 4*c), cos(4*d 
*x + 4*c))) + 12*(a^2*sin(4*d*x + 4*c)^3 + (a^2*cos(4*d*x + 4*c)^2 - a^2*c 
os(4*d*x + 4*c))*sin(4*d*x + 4*c))*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4 
*d*x + 4*c))) + (8*a^2*cos(4*d*x + 4*c)^2 + 8*a^2*sin(4*d*x + 4*c)^2 - 3*a 
^2*cos(4*d*x + 4*c) + 32*(a^2*cos(4*d*x + 4*c)^2 + a^2*sin(4*d*x + 4*c)^2 
- 2*a^2*cos(4*d*x + 4*c) + a^2)*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d* 
x + 4*c)))^2 + 32*(a^2*cos(4*d*x + 4*c)^2 + a^2*sin(4*d*x + 4*c)^2 + 2*a^2 
*cos(4*d*x + 4*c) + a^2)*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c 
)))^2 + 2*(16*a^2*cos(4*d*x + 4*c)^2 + 16*a^2*sin(4*d*x + 4*c)^2 - 19*a^2* 
cos(4*d*x + 4*c) + 3*a^2)*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x +...
 
3.3.13.8 Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2} \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate((a*cos(d*x + c) + a)^(5/2)*cos(d*x + c)^(3/2), x)
 
3.3.13.9 Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2} \, dx=\int {\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2} \,d x \]

input
int(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(5/2),x)
 
output
int(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(5/2), x)